The Definitive Guide to البيانات الضخمة
نقص التوافق القانوني: يعتبر تحقيق التوافق القانوني بين متطلبات حماية البيانات واستخدام البيانات الضخمة تحديًا، حيث قد يكون من الصعب مواءمة القوانين المختلفة وتطبيقات البيانات الضخمة.
استخلاص المعلومات القيمة وتحليل الأنماط واتخاذ القرارات الاستراتيجية
التحليل التمييزي: قد يواجه المتحللون تحديات قانونية في استخدام البيانات الضخمة للتحليل التمييزي.
التحليل غير المصرح به: يمكن استخدام البيانات الضخمة لتحليل سلوك المستخدمين واستهدافهم بطرق غير مشروعة أو غير مصرح بها.
في هذا القسم، سنتحدث عن التأثير المتزايد للذكاء الاصطناعي في المجال المالي ودوره في تغيير وتحسين طرق إدارة المال والاستثمار. أهم ما تعلمته يساهم الذكاء الاصطناعي في تحليل البيانات المالية وتحليل الأداء المالي باستخدام تقنيات الذكاء الاصطناعي.
ولهذا السبب ، فإن مهن البيانات الضخمة أدناه هي المناصب في مرمى البصر لحاملي درجة الماجستير في البيانات الضخمة.
تحديات الجودة: البيانات الضخمة قد تكون متنوعة وغير مهيكلة، ويمكن أن تحتوي على أخطاء أو تشويش.
على الرغم من أن البيانات الوصفية المصاحبة لصورة أو مقطع فيديو قد تكون شبه منظمة ، فإن البيانات الفعلية التي يتم التعامل معها غير منظمة.
الإبداع: يجب أن تكون لديك القدرة على إنشاء طرق جديدة لجمع وتفسير وتحليل إستراتيجية البيانات. الرياضيات والمهارات الإحصائية: يعد “الطحن الرقمي” الجيد القديم ضروريًا أيضًا ، سواء كان ذلك في علم البيانات أو تحليلات البيانات أو البيانات الضخمة.
تابعنا على تويتر تابعنا على فيسبوك تابعنا على نون يوتيوب تعلم البرمجة موسوعة حسوب دروس ومقالات
يهدف إلى فهم البيانات التي تم جمعها من مشاريع تكامل البيانات الضخمة وتحويل هذه البيانات إلى معلومات مفيدة وذات صلة للأعمال. وهو مسؤول عن إدارة البيانات والبنية التحتية وإدارة المعرفة وخطط تحليل البيانات الرائدة في بيئات مثل وسائل التواصل الاجتماعي.
"When I want classes on topics that my university isn't going to give, Coursera is one of the better destinations to go."
تحليل البيانات: يستخدم الذكاء الاصطناعي تقنيات وأدوات متقدمة لتحليل البيانات الضخمة.
اكتشاف الأنماط: يستخدم الذكاء الاصطناعي تقنيات اكتشاف الأنماط للتعامل مع البيانات الضخمة.